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Coarse Geometry

OBJECTS OF INTEREST

Idea: Study spaces from a large–scale perspective.

Notation: X,Y . . . metric spaces; d metric. Γ discrete group.

Examples:
• Finitely generated groups with word metric: Γ= 〈S〉, S=S−1,

|S| <∞. Define a metric by dS(g,h)= the length of a shortest word
in alphabet S representing g−1h.
E.g. if Z= 〈1,−1〉, then the metric is d(m,n)= |n−m|.

• Graphs (finite or infinite), endowed with the path metric.
• Complete Riemannian manifolds.
• “Coarse disjoint union” X =tnGn of a sequence of finite graphs (Gn).

Metric: on each Gn the path metric, d(Gn,Gm)=m+n+|Gn|+ |Gm|.
• “Box space”: X =tnCayley(Γ/Γn;S/Γn), where Γ= 〈S〉, |S| <∞, Γn ≤Γ

normal, [Γ :Γn]<∞.
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Coarse Geometry

EXPANDERS

For a finite graph G, the Cheeger constant is

h(G)=min
{ |∂S|

|S| : S⊂V(G),0< |S| ≤ |Gn|
2

}
.

A sequence of expanders (expander) is a sequence of finite graphs Gn,
such that

• the degrees of vertices are uniformly bounded,
• |Gn|↗∞ and
• infn h(Gn)> 0.

Think of it as a metric space X =tnGn.

First examples: Box spaces of residually finite groups with property (T),
e.g. tpSLn(Z)/SLn(Z/pZ). [Margulis]

In fact, a group Γ has property (τ) with respect to a family of finite index
subgroups (Γn)n∈N iff the box space X =tn(Γ/Γn) is an expander.
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Coarse Geometry

COARSE DEFINITIONS

A map f : X →Z is a (?) embedding, if there exist ρ+,ρ− : [0,∞)→ [0,∞)
with (??), such that

ρ−(d(x,y))≤ d(f (x), f (y))≤ ρ+(d(x,y)).

(?) (??)
coarse (CE) ρ− ↗∞
quasi–isometric (QI) ρ+ and ρ− are affine (t 7→At+B)
bilipschitz ρ+ and ρ− are linear (t 7→At)

A (?) embedding f is a (?) equivalence, if sup {d(z, f (X)) | z ∈Z}<∞.
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Coarse Geometry

EXAMPLES

EQUIVALENCES:
• Bounded space ∼c {pt}.
• Zn ∼c R

n, but Zm ∼c Z
n =⇒ m= n (asymptotic dimension).

• Free groups Fr (with the free generating sets), 2≤ r<∞ are all
bilipschitz equivalent [Papasoglu ’95].

• X = {22n | n ∈N}⊂N, metric from N. Any bijection is a coarse
equivalence, but any QI X →X is eventually constant.

BASIC GEOMETRIC GROUP THEORY LEMMA:
If Γ= 〈S〉 = 〈S′〉, |S|, |S′| <∞, then (Γ,dS)∼QI (Γ,dS′). So any QI invariant
is actually an invariant of the underlying group.

ŠVARC–MILNOR THEOREM:
If Γ acts properly and cocompactly on a length space X, then Γ∼QI X.
[So π1(M)∼QI M̃ for a compact Riemannian manifold M.]
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Coarse Geometry

COARSE PROPERTIES AND SOME THEOREMS

. . . amenability, asymptotic dimension, coarse embeddability into ___
(e.g. a Hilbert space)

THEOREM (G. YU ’97)
If M is a uniformly contractible complete Riemannian manifold with
bounded geometry and finite asymptotic dimension, then it admits no
metric of uniformly positive scalar curvature, within the class of CE
metrics.

THEOREM (G. YU ’00)
If Γ admits a coarse embedding into a Hilbert space, then the Novikov
conjecture holds for Γ.

Proved using operator algebras (Roe C*-algebras: algs encoding coarse
structure of a space) and K-theory. “Coarse Baum–Connes conjecture.”
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Coarse Geometry

ROE ALGEBRAS (“ENCODE COARSE STRUCTURE”)
Let X be a uniformly discrete [∃c> 0 with x 6= y =⇒ d(x,y)≥ c] metric
space with bounded geometry [∀R> 0, supx∈X |B(x,R)| <∞].

-
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The translation algebra of X, C[X],
is the *-algebra of X-by-X matrices (tyx)x,y∈X ,
tyx ∈C, with finite propagation [there exists
R≥ 0, so that d(x,y)≥R implies tyx = 0] with
uniformly bounded entries [supx,y |txy| <∞].
There is a *-representation λ :C[X]→B(`2X)
“by multiplication”. The uniform Roe C*-algebra
C∗

uX is the norm–closure of λ(C[X])⊂B(`2X).
Use K (H) instead of C Roe algebra C∗X. Coarse Baum–Connes
conjecture: “Compute K∗(C∗X)”.

THEOREM (WILLETT–S ’11)
If X has property A, then C∗

uX ∼=C∗
uY implies X ∼c Y.
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Uniform local amenability and Property A

AMENABILITY

DEFINITION (FØLNER)
A space X is amenable, if for all R,ε> 0 there exists finite E⊂X with
|∂RE| < ε|E|. [∂RE=BR(E)\E]

• Good for groups (they are very homogeneous).
• Bad for dicrete metric spaces (e.g. every tnXn with Xn finite, is

amenable)
• Fix for spaces? Need to “look at all the places within a space with

uniform parameters”.
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Uniform local amenability and Property A

PROPERTY A
DEFINITION (YU ’00)
X is said to have property A, if for every R,ε> 0 there exists S≥ 0 and
finite subsets Ax ⊂X ×N for each x ∈X, such that

• (x,1) ∈Ax for every x ∈X,
• |Ax4Ay| < ε|Ax ∩Ay| if d(x,y)≤R and
• the projection of Ax to X is contained in B(x,S) for every x ∈X.

• Implies CE(HSp) (a criterion).
• Classes of discrete groups having A: amenable, hyperbolic, linear

[Guentner–Higson–Weinberger ’05], mapping class groups
[Bestvina–Bromberg–Fujiwara ’10].

• finite dim’l CAT(0)-cube complexes have A [Campbell–Niblo ’04].
• Not known: Thompson’s group F.
• What about not having A?

Ján Špakula ( University of Vienna (supported by the European Research Council (ERC) grant of G. Arzhantseva, grant agreement n.259527))Uniform Local Amenability Apr 2013 12 / 18
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Uniform local amenability and Property A

FREE GROUPS HAVE A

1 aa−1

b

b−1

∞

x

y

→∞
Ax

d(x, y)

Choose S>0 so that
2R

S−R < ε.

Ax = { S points from x
towards ∞ }.
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Uniform local amenability and Property A

PROPERTY A AND OTHERS

equivariant side: coarse side:
amenability =⇒ property A

⇓ ⇓
Haagerup prop. =⇒ CE(HSp)

THEOREM

For a finitely generated group Γ, the following are equivalent:
• Γ has property A
• Γ acts amenably on some compact space [Higson–Roe ’00]
• C∗

redΓ is an exact C*-algebra [Guentner–Kaminker, Ozawa ’00]
• C∗

uΓ is a nuclear C*-algebra [Guentner–Kaminker, Ozawa ’00]
• C∗

uΓ is a locally reflexive [Sako ’13]
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Uniform local amenability and Property A

UNIFORM LOCAL AMENABILITY (ULA)

DEFINITION (FØLNER CONDITION)
A space X is

uniformly locally

amenable, if for all R,ε> 0

there exists
S> 0, such that for any finite F ⊂X

there exists finite E⊂X with

diam(E)≤S and

|∂RE

∩F

| < ε|E

∩F

|. [∂RE=BR(E)\E]

• “Localizing with finite measures instead of sets” or a “weighted
version”: ULAµ: . . . for any finitely supported probability measure µ
on X . . . and µ(∂RE)< εµ(E).

• ULA and ULAµ are coarse invariants.
• Why?

• “Easy” to check that it fails.
• For showing that a couple of known coarse properties are all

equivalent.
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Uniform local amenability and Property A

EQUIVALENCES

• [Chen–Tessera–Wang–Yu] Metric Sparsification Property (MSP)
=⇒ Operator Norm Localization Property (ONL); for K-theory
purposes

• [Elek–Timár] weighted hyperfiniteness ⇐⇒ MSP

THEOREM (BRODZKI–NIBLO–S–WILLETT–WRIGHT)

For spaces with
bounded
geometry:

CE(HSp) ULA

A +3 ULAµ

KS

ks +3 MSP +3 ONL.

KS

THEOREM (H. SAKO)
For spaces with bounded geometry: A ⇐⇒ ONL.

Question: Relation between CE(HSp) and ULA? (Known CE: ; ULA:
[AGS] example.)
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Uniform local amenability and Property A

PROBLEM: NON–EXACT GROUPS?

• Gromov’s Idea: take and expander X =tXn and find a group with X
in its Cayley graph. Details (tough) [Arzhantseva–Delzant ’09-12].

• ToDo: Elementary construction. Find a non-A group which CE(HSp)

SPACES of the sort X =tnXn; Xn finite graphs
• Expanders do not CE(HSp) [Gromov], so they do not have A.
• X does not have A if girth(Xn)→∞ and degrees of vertices are

between 3 and some N <∞. [Willett ’11]
• tn(Z/2Z)n: not A, but CE(HSp). Not bounded geometry. [Nowak ’07]
• A bdd. geom. example of X without A, but CE(HSp).

[Arzhantseva–Guentner–S ’10]; extended by [Khukhro ’13]

In all these examples, showing “not ULA” is easy.
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Uniform local amenability and Property A

NOT ULA PROOFS

NOT ULA: ∃R,ε> 0 ∀S> 0 ∃finite F ⊂X such that for any E⊂X with
diam(E)≤S, |∂RE∩F| ≥ ε|E∩F|.

EXPANDERS: Let X =tnXn be an expander. Denote NS =maxx∈X |B(x,S)|.
Let n be so large, that |Xn| > 2NS and take F =Xn. Then any E⊂Xn with
diam(E)≤S satisfies |∂1E| ≥ h(Xn)|E|.

GRAPHS WITH LARGE GIRTH: Let X =tnXn satisfy girth(Xn)↗∞ and
the degrees of all vertices are between 3 and some D<∞. For S> 0, let n
be so large, that a subset E of diameter S in Xn is isometric to a subset of
a tree. Then any such E satisfies |∂1E| ≥ 1

D−1 |E|.
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